(l华南理工大学物理科学与技术学院 广州510640)
(2香港中文大学物理系香港)
摘要:中国古陶瓷是国际性的艺术收藏品,它的真伪判定是一个关键而且是首要的问题.传统的“目鉴”方法由于它的主观性,结论不容易取得共识,也不易对采用现代高新技术制作的赝品做出准确的鉴别.对古陶瓷进行现代的科技方法鉴定是必然的趋势,而且已取得重要的进展.热释光检测方法是一种绝对断代方法,它不依赖于数据库的建立.经过40余年的发展,热释光技术已从早期的常规方法发展出前剂量方法和高温峰测定方法,一种快速无损的二氧化碳激光加热检测法亦己取得重要的进展.
关键词:中国古陶瓷,断代方法,热释光技术
1引言
陶瓷是中国的国粹,它是中华民族对人类文明的伟大贡献之一古陶瓷是中华文化的载体,一件精美的古瓷,它的造型、釉色和工艺,均丰富地表现着古人的艺术观和审美观.它不但以外在的美吸引着我们,同时展示着当时陶瓷工艺技术所达到的水平,凝聚着先辈的人文和科技的历史,一件古瓷的价值也就在于此.中国精美的轻、薄、透、亮瓷器从唐代开始就作为当时的高技术产品行销至世界各地.中国古陶瓷成为世界性的重要收藏品是有如上历史渊源的.它已成为世界上各民族自身历史的一部份.这就不难理解,为什么国外的公私收藏机构会出天价收购中国古陶瓷精品.2005年秋季,一件元代青花“鬼谷子下山”罐在纽约拍出近2.3亿人民币的中国艺术品第一高价.国外有财务分析师指出,艺术品投资在国际上己超过股票和房地产,成为增值最快的投资方式.
2中国古陶瓷的鉴定方法:目鉴与科鉴
一件古陶瓷是真品还是赝品是买卖和收藏的首要问题.由于巨大的利益驱动,仿制古陶瓷中的精品以充“真品”出售目前在我国己颇具规模,而且仿真度也越来越高,个别的已达到古陶瓷鉴定专家也难以辨别的水平.“目鉴”是古陶瓷传统的鉴定方法,它已运作了几百年。“目鉴”实质上是一种“比较断代(时间)断源(产地)方法”,并不是一种毫无根据的主观臆测.它实际上是鉴定者通过观察器物的胎、釉、彩、纹(饰)、工(艺)、型和头脑中已有的该类器件的知识相比较而得出断代和断源(窑口)的结论.这种通过比较来得出结论的标型学,在方法论上并没有问题.“科技鉴定”中的成分分析方法,同样也是通过比较来做出结论的.问题在于“目鉴”具有很强的主观性,很容易受鉴定者的主观和客观因素的影响.同一件器物不同的鉴定者的结论往往会截然不同,甚至同一鉴定者会先后给出不同的结论.因此,能否运用现代科学技术方法对古陶瓷进行准确的、客观的、数量化并可重复的科学鉴定就成为非常有意义的事.对古陶瓷进行现代科学技术鉴定在世界上也只是近几十年的事,古陶瓷的科技检测方法有很多种,但比较成熟的为“元素成分分析”和“热释光分析”这两类.其中的“热释光”方法是目前较有成效并己进入商业运作的科学鉴定方法,本文将重点介绍这个方法.作为一个对比,我们先简要地介绍元素成分分析方法[1].
3元素成分分析:一种比较断代的科技鉴定方法
根据陶瓷胎釉成分进行比较断代的“元素分析方法”有两种,其一是微量取样,然后进行化学成分分析,另一种是无损辐射方法,它利用各种粒子(如电子、中子、质子等)去激发受测陶瓷样本的胎、釉,使其发出X射线能谱,再从谱线分析出各种主量、次量及微量元素的含量,把它们和取自同样窑口古窑址的标准样本的元素含量作比较.如果两者相符,就认为该窑址标准样本的窑口和年代就是被检测器件的窑口和年代.反之,受测陶瓷器件的窑口和年代就不确定.因此,“成分分析”和“目鉴”一样,也是一种“比较断代断源(产地)方法”,是古陶瓷的“指纹学”.目前已被使用的成分分析技术有中子活化分析方法(NAA)、X射线荧光分析方法(XRF)、质子激发X射线分析方法(PIXE)以及同步幅射x射线荧光分析方法(SRXRF)等[1]。
不难理解,用成分分析方法去断代,除了设备和技术方面的因素外,鉴定结论的正确与否将取决于所采用的窑址标准件,以及用大量的标准件建立起来的数据库.但是,除了历代官窑和一些著名的民窑制品外,标准件的选定是非常困难的.我们知道,在中国同一窑系跨越的地域是很广的,同一窑系不同产地的胎土和釉的化学成分亦有很大的区别。一个完整的、可信赖的数据库,严格地说,应该包含所有的产地(窑口),这一点是不容易做到的.因为许多古窑口早已湮没,或被迭压,已再没有采样的可能.另一方面,在同一窑口,同一考古发掘文化层,亦可能混有其他窑口的残片.它们纵然年代相近,但其元素含量也会很不相同.如这类混入的瓷片被误用为标准件,就会影响数据库的准确性.由此我们不难想象,建立起一个为“成分分析”方法服务的数据库,其难度和工作量是十分巨大的.如不动员和协调全国有关机构的力量,这个庞大的数据库恐怕是难以建立起来.而在某一个窑系完整可信赖的数据库完全建立起之前,这一窑系器件“元素成分分析”方法的准确性就会有疑问.
4热释光:古陶瓷的一种绝对断代方法
热释光现象在300多年前就已被发现,在1663年英国化学家Boyle首先报道了钻石受热发光的观察.在1960年,Kennedy和Knopff第一次报道了古陶瓷的热释光现象[2].经过几十年的发展,热释光断代已在考古学和古陶瓷年代鉴定等领域取得广泛的应用[3~6].热释光断代不需要依靠标准器进行比较,所以它是一种绝对断代的方法.因为陶瓷的胎和釉中含有各种各样的矿物晶体,如石英、长石和方解石等,其中石英晶体含量最大,同时具有最强的热释光效应.石英的主要成分是SiO2.这些晶体在受到核辐射(如α,β和γ等射线)的作用时,在微观结构上产生了变化,并积累了相应的能量.因此若把陶瓷样本加热,可观察到物理学上的“热释光”现象,这些矿物晶体在历史上积累的能量会以发光的形式释放出来,而且热释光的强度与它们所累积接受的核辐射数量成正比.由于陶瓷器件所接受的核辐射主要来自于陶瓷本身和自然环境所含的微量放射性杂质(如铀、钍、钾40等),它们的放射性剂量相对恒定,因此热释光的强度便和受辐射时间的长短成正比一件古陶瓷在当年的烧制过程中,它胎土中的石英、长石、方解石等矿物晶体千万年原始累积的热释光能量都会因烧制时的900~1300℃高温而全部释放掉,就像是把“热释光时钟”重新拨回零.从它烧成之日开始,该陶瓷器将重新积累热释光信息,相当于“热释光时钟”重新运转.在该器件进行热释光检测时测量得到的热释光信息,是与它的烧制后时间长短成正比的,热释光方法就是通过测量所累积的辐射能,计算出该器件烧制后距离现在的时间,从而达到断代的目的,这就是热释光方法的基本原理.由于器件累积的受辐射信息完全储存在它本身中,只需在该器件上取样检测即可断代,而不必与相应窑址的出土样品数据进行比对,所以这是一种绝对断代方法,是很准确可靠的.
5热释光的微观机理
热释光的微观机理是很复杂的,通常均使用离子晶体缺陷模型来进行解释.显然这模型有一定的局限性,因为对古陶瓷热释光效应作出主要贡献的SiO2并不是单纯的离子晶体.由于硅和氧的电子亲和力不同,SiO2的4条Si—O键具有40%的离子性和60%的共价性.但离子晶体缺陷模型仍可以给热释光一个定性的微观解释 [3~6].客观上离子晶体虽由正负离子晶格构成,但它并不呈完全理想的周期排列,而是存在各种类型的缺陷.最普遍的有,杂质原子的代位或填隙缺陷、局部位错或畸变等.但对热释光作出贡献的主要机理是,在核辐射的作用下,离子晶体的负离子离开正常的位置形成负离子空穴,使该位置成为电子的“陷阱”.当被核辐射激发到导带的电子扩散到“陷阱”附近时就会被吸引成为“俘获电子”.另一方面,核辐射电离形成的空穴也在价带中扩散,它可能被杂质离子所“俘获”,形成“释光中心”“俘获电子”处于导带下的新能级,而空穴形成的“释光中心”则处于价带上的新能级,这两者都是亚稳态.它们的数量显然和样品历史上所经受的核辐射数量成比例.热释光就是上述电离的复合过程.当取出的样品被加热时,晶格原子的热振动将变得剧烈,“俘获电子”从中获得离开“电子陷阱”的能量,重新在导带中自由扩散.当它扩散至空穴所在的“释光中心”与空穴离子复合时就发出所谓的“热释光”。.显然,热释光的色及强度与陷阱能级深度及数量有关,如在样品加热升温的过程中连续地测量热释光的光强,就可得出一条温度一光强的热释光曲线.它是样品年龄计算的基本数据.图1中曲线a给出的是对一件明代瓷器实测的热释光曲线,它的热释光峰出现在300℃附近;曲线b是本底热辐射曲线.
热释光断代是需要对陶瓷器取样的,因此是一种有损检测方法.不同的检测机构取样的形状不同,一般为直径约3mm的圆柱形或边长约3mm、深亦约3mm的三角锥形.如果取样适宜,应不会影响到陶瓷器的外观.
6热释光方法的古陶瓷年龄计算
热释光信息一般是以“辐射当量”来表示的,测量方法是先用辐射剂量照射陶瓷样品,计算出能够引发同量的天然热释光所需的辐射剂量,此剂量就是天然热释光的“辐射当量”.将测得的陶瓷每年接受的辐射剂量代入下列简单公式中就能计算出它的年龄:
年龄=辐射当量/年剂量.
所以对每一件陶瓷器的断代,必需对光强度以及年剂量两个参数进行精确测量.如果能有高精度的实验数据,年代误差为10%至20%是可以达到的。
从热释光原理可以看到,年份较远的陶瓷,光的强度较强.相对地年份较近的陶瓷器(如明清瓷为100~600年,有效剂量是0.5~3Gy),它的光强会很弱,测试难度也相应地提高.所以为要成功地用热释光断代,对测试人员的技术要求是相当高的.只熟悉热释光方法应用于地质学(地质样本准确度是5一10万年)或核辐射科学(有效剂量约300Gy)的技术人员是未必能适应古陶瓷断代的高精度要求的.
7热释光前剂量方法:线性法和饱和指数法
在20世纪60年代热释光被发展成为一项考古、测年的新技术,目前这项技术还在不断发展,以适应不同检测对象的需要.就古陶瓷而论,上述的常规热释光测定方法对于唐代以前的高古陶瓷器断代是十分准确的,但对宋代以后的器物,特别是明清瓷,由于历史上累积的辐射当量较低,所以热释光的反应及灵敏度就变得相当低,它存在较大的误差,甚至无法准确地确定器物的年龄.针对这一类器件,在20世纪80年代早期,Fleming等人发明了前剂量技术[7、8].所谓前剂量就是用实验室后加的人工辐射去决定古剂量.他们的主要发现是,作为瓷胎成分之一的矿物晶体石英在110℃时峰有明显的前剂量效应.只要把石英(样本)加热到500℃左右,则下一次接受相同剂量辐射发出的热释光会大大增加,而且这增加线性正比于古剂量或两次加温到500℃的热激活间所加的剂量.因此我们可以利用前后两次施加的试验剂量的热释光来估算古剂量.由于用这方法使石英110℃热释光峰能够被测量出来,因此它的确解决了一部分宋代以后瓷器的断代问题.但大量实践表明,上述的线性正比关系只存在于年代较短的瓷器热释光性质中,对于明清以前的瓷器它往往会引起过大的误差.为了克服线性法的缺点,必需考虑热释光灵敏度和辐射剂量的非线性关系.为了这个目的,上海博物馆考古实验室发展出一个前剂量饱和指数法来改进线性前剂量方法,并取得重要的结果.他们估计使用这个方法,瓷器的可测率及真伪鉴定的正确率均在95%以上.这是一个很可观的成绩[9].
由于中国古陶瓷的复杂性和多样性,国外检测机构从实践上发现对于相当一部分瓷器,例如宋代的磁州窑、龙泉窑和某些明清官窑,后加辐射并不能提高灵敏度.对这一类器件,前剂量方法并不生效.事实上,作为前剂量方法的开创者之一,英国牛津大学的stoneham在1983年就己发表论文,指出前剂量方法在古瓷检测中的局限性[8].stoneham现在是牛津鉴证实验室(oxford Authentication Lab,)的负责人,最近,她在一封致客户的公开信中承认,对某些器件,前剂量方法常常无法断代,并把原因归结为在高温烧制过程中瓷胎的石英结构发生了较大的变化[10].另一方面,近年来,前剂量方法也面临另一种挑战,有些高仿瓷制造者对现代仿古瓷施加人工核辐射,以扰乱前剂量法的热释光曲线,以图令现代仿品混过检测成为“真品”.为了解决上述问题,就要求热释光方法在技术上有新的突破,探索出一种比前剂量更好的方法.
8热释光技术的新进展—高温峰测年技术
过去人们认识上存在一个误区,认为热释光高温区光强太微弱,因此不以它为研究对象.其实热释光高温峰虽然弱,但它同样包含着试样准确的年龄信息,问题只在于能否做出准确的测量.热释光技术的最新发展是热释光高温峰测年技术的出现.这项技术和前剂量方法不同,它的关键不是重点测量和研究110℃附近的低温峰对剂量的反应,而是测量300一500℃的高温峰,并由此计算出样品的年龄.为了克服高温区光强较弱的困难,这项专利在取样技术以及检测方法上均做出重要的改进.在数据处理方面,开发出一套基于发光反应动力学的计算机程序来分析所测得的热释光数据,系统地计算瓷胎中不同的矿物晶体对不同辐射源的反应,然后综合这些结果,计算出被测瓷器的年龄.使用这种热释光高温峰测年技术,对一批前剂量方法未能得出结果的从宋代至晚清的瓷器,以及施加过外辐照的高仿瓷进行检测,结果都得出了与器件相符合的年代结论.
9热释光检测方法的发展方向及展望
热释光检测古陶瓷方法经过近五十年的发展,已取得了重大的成绩,但整个技术仍在不断进步.这一方面是由于科学技术本身总是在不断进步和自我完善的,另一方面也由于中国古陶瓷的复杂性,生产时间跨越几千年,生产地域跨越几百万平方公里.随着研究和实践的进展,现在和将来都必然会发现某一窑口或某一类型的器件是现有的热释光技术所无法准确检测的,就如同现在所知的前剂量方法对某些器件无效一样.这就要求热释光方法进一步改进.热释光检测方法还存在一个大问题,那就是它是一种有损检测技术.古文物由于它的不可再生性以及审美要求,非在不得已的情况下是不容取样研究的.能不能研究出一种无损伤的科学检测方法,是一个十分重要的研究方向,这方面的探索已在一些研究组中进行.其中一个方法是使用由光纤导引的二氧化碳激光(10.6μm)的红外辐射直接对瓷器加热,利用激光的聚焦特性令试样在百分之一秒内无损地发出热释光.这种无损技术在原理和技术上均己取得有意义的进展并有着远大的发展前景[11、12].我们可以想象,一旦一个准确的、无损伤的、而且价格低廉的热释光检测方法出现,将会给现今赝品盛行的国内、外古陶瓷收藏界,从藏家、古玩商、拍卖公司直到仿古陶瓷制造者,带来怎样的震撼与冲击.在科学技术高速发展的今天,以人类几近无限的认知能力,我们完全可以期望这一天的到来.
参考文献
[1]沙因主编.考古文物与现代科技—现代科技考古研讨会会议文集.北京,2001.[Ed sha Yin. Proceeding of the symposium on Scientific and Technological Archaeology. Beijing,2001(inChinese)]
[2]Kennedy GC,Knopff L.Arheology,1960,13:147
[3]Aitken M J.Themoluminescence Dating London: Academic Press,1985
[4]Mckeever S.S Themoluminescence of Solid Cambridge:Cambridge University Press,1985
[5]Chen R,Mckeever S S.Theory of Themoluminescence and Relaed Phenomena. SingaPore:World Scientific,1997.
[6]王维达,中国热释光与电子自旋共振测定年代研究.北京中国计量出版社,1997[Wang W D.Dating study of Themoluminescence and ElectmnicSPin一resonance Techniques in China.Beijing:Chinese Measurement publishing House,1997]
[7]FlemingS J,ThomP son J.Health Phys.,1970,18:567
[8]Stoneham D.PACT,1983,9:227
[9]王维达.文物天地,2004(156):40[Wang W D.Cultual Relics world,2004,156:40(inChinese)][10]Stoneham D.私人通讯[Stoneham D.Private communication]
[11]Law lessJ L,Lo D(罗荫权).Jourmal of Applied Physics,2001,89:6145
[12]LawlessJ L,Lam S K,Lo D(罗荫权).Optics Express,2002、10:291